阿里云
发表主题 回复主题
  • 949阅读
  • 0回复

[大牛分享]浅谈GPU虚拟化技术(三)GPU SRIOV及vGPU调度

级别: 论坛编辑
发帖
5230
云币
10254
1C=P#MU`  
^\jX5)2{  
GPU SRIOV原理 `|Z@UPHzG  
1iL xXd  
ilpZ/Rs  
谈起GPU SRIOV那么这个世界上就只有两款产品:S7150和MI25。都出自AMD,当然AMD的产品规划应该是早已安排到几年以后了,未来将看到更多的GPU SRIOV产品的升级换代。S7150针对的是图形渲染的客户群体,而MI25则针对机器学习,AI的用户群体。本文以围绕S7150为主。因为S7150的SRIOV实例在各大公有云市场上都有售卖,而MI25目前看来尚未普及(受限于AMD ROCm生态环境的完备性)。
  • :-" jK w  
    TR_oI<xB2  
    两个术语:SRIOV的PF,VF .WyX/E$I^!  
    BrMp_M  
.MARF  
(专业人士请动忽略这部分介绍 VQMd[/  
PF:宿主机上的主设备,宿主机上的GPU驱动安装在PF上。PF的驱动是管理者。它就是一个完备的设备驱动,与一般的GPU驱动的区别在于它管理了所有VF设备的生命和调度周期。比如下图的07:00.0便是PF设备 wg0.i?R-]  
VF:也是一个PCI设备,如下图中的07:02.0和07:02.1。QEMU在启动过程中通过VFIO模块把VF 作为PCI直通设备交由虚拟机,而虚拟机上的操作系统会安装相应的驱动到这个直通的VF PCI 设备上(07:02.0)。VF设备占用了部分GPU资源。比如下图中一个PF上面划分出了两个VF,那么很有可能跑在VF上面的虚拟机GPU图形渲染性能宏观上是PF的1/2。 <SdJM1%Qo  
l(\8c><m  
上图是一个带有4个S7150的服务,并且每个S7150 SRIOV虚拟出2个vGPU。
  • %&+R":Bw  
    GPU SRIOV的本质
t0d '>  
SRIOV的本质是把一个PCI卡资源(PF)拆分成多个小份(VF),这些VF依然是符合PCI规范的endpoint设备。由于VF都带有自己的Bus/Slot/Function号,IOMMU/VTD在收到这些VF的DMA请求的过程中可以顺利查找IOMMU2ndTranslation Table从而实现GPA到HPA的地址转换。这一点与GVT-g和Nvidia的GRID vGPU有本质上的区别。GVT-g与Nvidia GRID vGPU并不依赖IOMMU。其分片虚拟化的方案是在宿主机端实现地址转换和安全检查。应该说安全性上SRIOV方法要优于GVT-g和GRID vGPU,因为SRIOV多了一层IOMMU的地址访问保护。SRIOV代价就是性能上大概有5%左右的损失(当然mdev分片虚拟化的MMIO trap的代价更大)。由于SRIOV的优越性和其安全性,不排除后续其他GPU厂商也会推出GPU SRIOV的方案。
  • E/$@ud|l"  
    )"jn{%/t  
    关于SRIOV 更多的思考 wf< `J/7u  
    qZ_fQ@   
T-2p`b}h W  
SRIOV也有其不利的地方比如在Scalable的方面没有优势。尤其是GPU SRIOV,我们看到的最多可以开启到16个VM。设想如果有客户想要几百个VM,并都想要带有GPU图形处理能力(但是每个VM对图形渲染的要求都很低),那么SRIOV的方案就不适用了。如果有一种新的方案可以让一个GPU的资源在更小的维度上细分那就完美了。事实上业界已经有这方面的考虑并付诸实践了。 rRrW   
ZfCr"aL  
GPU SRIOV内部功能模块 =k<4mlok^  
UJ)M:~O  
AYu'ptDNr  
(吃瓜群众可以跳过) q=% C (  
由于没有GPU SRIOV HW的spec与Data Sheet,我们仅能按照一般的常用的方式来猜测GPU SRIOV内部功能模块(纯属虚构,如有雷同概不负责)。 -L3 |9k  
s5aOAyb*w  
GPU的资源管理涉及到vGPU基本上三块内容是一定会有的:Display,安全检查,资源调度。
  • 2n;;Tso"  
    uQtk|)T E  
    Display管理 ?$@ KwA  
    AH 87UkNL  
fy=C!N&/  
GPU PF需要管理分配给某个VF的FrameBuffer大小,以及管理Display相关的虚拟化。Display的虚拟化一般分为Local Display和Remote Display。比如XenClient就是用的Display Local Virtualization,属于本地虚拟化过程。此过程相当于把显示器硬件单元完全交由当前虚拟机控制。在云计算行业,Display更多的是采用Remote Display的方式。我们后续会讲到行业中Remote Display的问题所在。
  • +'Y( V&  
    QDgEJ%U-  
    VF 安全检查 &c?hJ8"  
    R ms01m>Y  
+s(IQt  
GPU PF或者GPU SRIOV模块需要承担一部分的VF的地址审核(Address Audit)和安全检查,GPU SRIOV的硬件逻辑会保证暴露出的VF Register List并确保不包含特权Register信息,比如针对GPU微处理器和FW的Registers操作,针对电源管理部分的Registers也不会导出到VF中。而VM对所有VF的MMIO读写最终会映射到PF的MMIO地址空间上,并在PF的类似微处理器等地方实现VF设备的部分MMIO模拟。 FDd>(!>  
另外一部分的安全检查则是PF需要确保不同VF直接对GPU FrameBuffer的访问隔离。这部分很有可能需要PF针对不同的VF建立GPU的Pagetable,或者Screen所有的VF提交的GPU BatchBuffer。
  • t6g)3F7T  
    <AAZ8#^  
    VF调度 *[1u[H9Cv  
    0B$7S,2  
PVS<QN%  
AMD GPU SRIOV从硬件的角度看就是一个对GPU资源的分时复用的过程。因此其运行方式也是与GPU分片虚拟化类似。SRIOV的调度信息后续重点介绍。 azDC'.3{p  
kGuk -P  
GPU SRIOV的调度系统 JfP\7  
[' OCw {<  
  • "X{aS}  
    51ajE2+X&  
    分时复用 7=p-A _X  
    o&XMgY~  
ss0'GfP  
VF的调度是GPU虚拟化中的重点,涉及到如何服务VM,和如何确保GPU资源的公平分片。 D"x$^6`c}  
Il^ \3T+  
GPU SRIOV也是一个分时复用的策略。GPU分时复用与CPU在进程间的分时复用是一样的概念。一个简单的调度就是把一个GPU的时间按照特定时间段分片,每个VM拿到特定的时间片。在这些时间片段中,这个VM享用GPU的硬件的全部资源。目前所有的GPU虚拟化方案都是采用了分时复用的方法。但不同的GPU虚拟化方案在时间片的切片中会采用不同的方法。有些方案会在一个GPU Context的当前BatchBuffer/CMDBuffer 执行结束之后启动调度,并把GPU交由下一个时间片的所有者。而有些方案则会严格要求在特定时间片结束的时候切换,强行打断当前GPU的执行,并交予下一个时间片的所有者。这种方式确保GPU资源被平均分摊到不同VM。AMD的GPU SRIOV采用的后一种方式。后续我们会看到如何在一个客户机VM内部去窥探这些调度细节 s{z~Axup-  
  • (XG[_  
    EB29vHAt~  
    调度开销 \Ul.K!b7  
    e@,u`{C[  
wSJ]3gJM`  
然而GPU的调度不同于CPU的地方是GPU上下文的切换会天然的慢很多。一个CPU Core的进程切换在硬件的配合下或许在几个ns之内就完成了。而GPU则高达几百ns(比如0.2ms-0.5ms)。这带来的问题就是GPU调度不能类似CPU一样可以频繁的操作。举一个例子:GPU按照1ms的时间片做调度,那么其中每次调度0.5ms的时间花在了上下文的切换上,只有1ms的时间真正用于服务。GPU资源被极大浪费。客户理论上也只能拿到66%的GPU资源。 d(DX(xg  
  • Bd[L6J)  
    /\-2l+y>J  
    S7150的调度细节 Z4HA94  
    ^0`<k  
sR>`QIi(a  
接下来我们来看一下作为首款GPU SRIOV方案的S7150是如何调度的。由于S7150是中断驱动的结构,所以通过查看虚拟机内部GPU中断的分布情况就可大致判断出GPU SRIOV对这个虚拟机的调度策略。 iO9nvM<  
r{q}f)  
对于Windows的客户机,我们可以在内部安装Windows Performance kit,并检测"GPU activity"的活动。 aucZJjH  
sk7rU+<  
对于Linux的客户机,则更简单,直接查看GPU驱动的trace event。当然我们要感谢AMD在提供给Linux内核的SRIOV VF驱动上没有去掉trace event。这让我们有机会可以在VM内部查看到SRIOV的调度细节。(不知道这算不算一种偷窥?) 2GiUPtO&Gj  
V{T{0b" \U  
我们在阿里上随便开启一台GA1的1/2实例。 ` Y{>2UFX  
"^9[OgE:  
并选择Ubuntu(预装AMD驱动)作为系统镜像; q4 Oxs  
在Console下查看所有的GPU相关的trace如下表: uOG-IHuF  
UK"}}nO@e  
aJ5H3X}Y  
]3O 4\o  
很不错,我们发现有两个GPU驱动分发workload的event:amd_sched_job与amd_sched_process_job。 e~+(7_2  
yHWi [7$  
在VNC中开启一个GPU Workload以后(比如Glxgears或者Glmark,当然我们需要先开启x11vnc),我们通过下面Command来采集GPU数据。 poXLy/K  
trace-cmd record –e gpu_sched I!$jYY2  
… 等待几秒中ctrl+c终止采集。 YH)Opk  
trace-cmd report > results.log ;m@1Ec@* p  
查看我们抓取这两个event的事件并记录下来几个有趣的瞬间: )|w*/JK\Z  
J$#h( D%  
=ze FK_S!  
*'9)H 0  
0$eyT-:d  
XYqpI/s  
所有的log在一段时间内是连续的,然后断开一段时间,然后又连续的workload提交。 On{~St'V  
24T@N~\g  
截图上的小红框是我们需要关注的间隔时间。摘取如下表: <91t`&aWW  
o {=qC:b  
事件时间ns
eecw]P_?  
间隔
V#ndyUM;  
8G0  
1437.803888 yWj9EHQU[  
1437.810159
.A3DFm3t  
6.271ms
5cD XWF  
无GPU活动
#*!+b  
1437.816378 _9D|u<D  
1437.822720
UdT&cG  
6.342ms
+yzcx3<  
无GPU活动
2HcsQ*H] G  
1437.829105 'oleB_B  
1437.835127
No:^hY:F8  
6.022ms
nIfN"  
无GPU活动
; D1FAz  
1437.841587 y^2#9\}K  
1437.847506
BjM+0[HC  
5.919ms
>@^<S_KVh  
无GPU活动
as>:\hjP##  
很明显在上述时间窗口期内当前VM的GPU被暂停了,并被切换至服务其他VM。因此当前VM的GPU workload会积压在驱动层次。 9160L qY  
vFTXTbt'h  
我们把所有的event在图表上打点后就可以发现,对于一个1/2GPU实例的VM来说,它占用的GPU资源是基本上以6ms为时间片单位做切换的。 |5W8Q|>%  
作图如下: :`D'jF^S  
h ~ $&  
  • cv3L&zg M  
    :]'q#$!  
    估算vGPU的调度效率 9oEpPL5  
    xJ-*%'(KZ  
gWkjUz )  
我们假设每次vGPU的调度需要平均用到0.2ms,而调度的时间片段是6ms,而从上图的结果来看,AMD GPU SRIOV是采用严格时间片调度策略。6ms一旦时间用完,则马上切换至下一个VM(哪怕当前只有一个VM,也会被切走)。所以1/2实例的S7150的调度效率可以达到:96.7%如果有两个这样的VM同时满负荷运行,加起来的图形渲染能力可达到GPU直通虚拟化的96.7%以上。 VSh!4z1  
H ZPcd_(  
实测结果如下: ugno]5Ni  
u=%y  
1/2vGPU+ 1/2vGPU = 97.4% (vs GPU直通性能) ] GNh)  
dsV ~|D6:  
每一个vGPU可以达到直通GPU性能的48.x%,整体性能可以达到97.4%,与我们的预估非常接近。 W+8^P( K  
TM0b-W (H  
kfXS_\@iW1  
更多的关于GPU虚拟化调度的思考 3!aEClRtq  
7{-@}j`  
i-b1d'?Rb  
不得不说AMD S7150在vGPU调度上是非常成功的。AMD的GPU硬件设计保证了可以在任何当前GPU Batch Buffer的执行过程中可以被安全的抢占(GPU Workload Preemption),并切换上下文到一个新的Workload。有了这样卓越的硬件设计,才使得PF驱动在软件层面的调度算法可以如此从容有序。6ms强制调度保证了多VM在共享GPU资源的情况下不会饥饿不会过度占用。调度开销极小(2-3%)。而且这样的设计在VM数量不多的情况下可以进一步调整时间片的大小比如12ms,则GPU的利用率会更进一步提高。那么为什么不能采用100ms调度?因为Windows内核对"GPU activity"的活动有监视。任何GPU CMD在2秒内没有响应,Windows就会发起Timeout Detected Recover(TDR),重置GPU驱动。设想如果你有16个VM,调度时间片为100ms的情况下,平均一个VM轮转到GPU资源的最小间隔就有1.6s。加上其他由于PF驱动被Linux内核调度的延迟,很有可能触发Windows Guest内部的TDR。 I:F <vE  
\*uugw,\y  
不知不觉把GPU虚拟化的调度都在这章里讨论过了。很好,专门介绍GPU调度的章节可以省下来了
x
发表主题 回复主题
« 返回列表上一主题下一主题

限100 字节
批量上传需要先选择文件,再选择上传
 
验证问题: 阿里云官网域名是什么? 正确答案:www.aliyun.com
上一个 下一个